
CPIT-252
Software Design Patterns

Java Collections and Generics

Khalid Alharbi, Ph.D.
Last updated: 20/03/2022

Introduction

• We often store our data in variables and create instances (objects) of
our classes.
• We may use simple data structures such as arrays to store our values.
• We may also arrange elements in slightly more complex data

structures such as multi-dimensional arrays to represent elements in
rows and columns.
• We may work with various type of data where these options are not

appropriate solutions to our problems.

Khalid Alharbi, Ph.D.

Introduction (cont.)

A program that looks like this may be a start, but we often deal with
various types of data that need to be stored in a collection with
efficient flexible operations on large amounts of data.

Khalid Alharbi, Ph.D.

String username = "ali990";

Student s = new Student(2200990, "Ali", 3.90);

String[] courseTaken = new String[42];

// 2-d array initialized with values

int[][] courseYear = { { 252, 2022 }, { 405, 2022 }, { 305, 2021 } };

Array

• An Array is a sequence of elements or values of the same type.
• Each element is stored at a zero-based location called index.
• The number of elements in an array is called length.

Khalid Alharbi, Ph.D.

45 67 48 23 67 97Value

Index 0 1 2 3 4 5

Length = 6

int[] arr = {45, 67, 48, 23, 67, 97};
System.out.println(arr.length);
System.out.println("Second item: " + arr[1]);

6
Second item: 67

Multidimensional Array

• A multidimensional arrays is a collection of elements or values of the
same type.
• In two-dimensional arrays, elements are laid out in a rectangular grid

with rows and columns.

Khalid Alharbi, Ph.D.

int[][] arr = { { 45, 67, 48, 23, 67, 97 }, { 17, 9, 28, 0, 11, 32 } };
int[][] arr2 = new int[2][6]; // 2 rows 6 columns initialized with zeros.
System.out.println(arr[0][0]); // row 0, column 0 => 45
System.out.println(arr[0][1]); // row 0, column 1 => 67

45 67 48 23 67 97

Row 1

0 1 2 3 4 5

17 9 28 0 11 32

Column

Row 0

Limitations of arrays

• The use of arrays will inevitably lead into problems due to their
inherent limitations:
• Arrays are fixed in size.
• Arrays can not store data of various data types.
• No easy duplicate removal
• No default and optimized search and sort feature

• As our program continues to grow and the amount of data increases,
we will need bigger, more efficient and flexible data structures.
• Data structure is a way to organize data in a cohesive unit that

enables efficient access and modification.

Khalid Alharbi, Ph.D.

The Java Collection Framework
The Java Collection API was introduced to solve the problem of storing various types of
data inside container data structures with an efficient and flexible access.
We will look at the available data structures in the Java collection framework: Set, List,
Queue, Deque, and Map. Finally, we will see how generics make collections powerful.

Khalid Alharbi, Ph.D.

Collections

• Collections are fundamental data structures for storing and accessing
data.
• A collection is an object that represent and manipulate a group of

objects called elements.
• Some collections allow duplicate elements and others do not. Some

are ordered and others are unordered.
• Learning how to use collections will help improve the efficiency and

performance of your program as well as increase your productivity
since you do not need to implement these powerful data structures
and reinvent the wheel.

Khalid Alharbi, Ph.D.

The Java Collection Framework

• The Java Collection Framework is a unified library of classes and
interfaces for working with collection objects.
• It provides methods for adding, removing and searching for a

particular element within a collection of elements.
• The collection framework defines a handful of interfaces in the
java.util package.
• These interfaces are divided into two groups:

1) java.util.Collection: used for containers that hold elements.

2) java.util.Map: used for key/value pairs.

Khalid Alharbi, Ph.D.

Part 1:
java.util.Collection
interface
The Collection interface is used for containers that hold elements.

Khalid Alharbi, Ph.D.

The Collection interface* (I)

Khalid Alharbi, Ph.D.

* Not the complete list of classes and interfaces.

The Collection interface (II)

• The Java collection framework uses three main interfaces: Set, List,
and Queue.
• Each interface is implemented by concrete classes in multiple ways:

• HashSet, TreeSet and LinkedHashSet implement Set
• ArrayList and LinkedList implement List
• LinkedList , ArrayDeque implement Queue

Khalid Alharbi, Ph.D.

The Collection interface (III)

• It defines common operations to all collections and describes what it does
but not how it does it. Examples:
• Add an element to the collection:

• public boolean add(element)
• Remove an element from a collection:

• public boolean remove(element)
• Check if an element is in the collection:

• public boolean contains(element)
• Iterate or loop through all elements using an Iterator object

• public Iterator iterator()
• Get the size of the collection:

• public int size()

Khalid Alharbi, Ph.D.

Constructing a Collection (I)

Interface<Type> name = new Class<Type>();
• The type of the collection’s elements is specified between < and >.
• The type must be a class type (e.g., Integer, String, etc.) and can’t be a

primitive data type (e.g. int, boolean, etc.)
• This is called a Generic class, which allows a collection to store

elements of different types. Examples:

Khalid Alharbi, Ph.D.

Set<String> mySet = new HashSet<String>();

List<Integer> myList = new ArrayList<Integer>();

Queue<Student> myQueue = new LinkedList<Student>();

Constructing a Collection (II)

• The Java Collections framework makes heavy use of interfaces to
describe abstract data types:
• Set, List, Queue, Deque and Map

• We declare variables using interface types with elements of object
data types.
• Why interfaces? Because we can use a different implementation later without

requiring significant changes to existing code. This means that we can add,
change and remove elements in the same way.

Khalid Alharbi, Ph.D.

List<Integer> myList = new ArrayList<Integer>();

myList = new LinkedList<Integer>();

Autoboxing and Unboxing

• Unlike arrays, collections can not store primitives directly and only
store objects.
• The Java compiler will convert primitives into their corresponding objects

through auto-boxing and back to primitives through unboxing.

Khalid Alharbi, Ph.D.

List<Integer> myList = new ArrayList<Integer>();

myList.add(23); // autoboxing (int -> Integer)

int a = myList.get(0); // unboxing (Integer -> int)

Collections

• We will look at the following data structures in the Java collection framework:
1. Set:

• HashSet
• TreeSet
• LinkedHashSet

2. List:
• ArrayList
• LinkedList
• Vector

3. Stack
4. Queue
5. Deque

Khalid Alharbi, Ph.D.

Set (I)

• A Set contains an unordered collection of unique elements.
• It models the mathematical set model where duplicate elements are

not allowed.
• A Set has no notion of position of stored elements within the

collection.
• If you try to add an element that already exists in a Set, the add()

method will return false.

Khalid Alharbi, Ph.D.

Set (II)

The Set interface has three concrete implementations:
1. The HashSet class implements the Set interface and stores elements in a

hash table.
• Best for performance but order of elements is not guaranteed.

2. The TreeSet class implements the Set interface and stores an ordered set
of elements in a TreeMap data structure.
• Slower than a HashSet but it orders its elements based on their values and can find

the closest match for a target, greater than or lesser than a given search target.
3. The LinkedHashSet class implements the Set interface and stores

elements in a hash table with a linked list running through it
• It orders its elements based on the insertion-order.

Khalid Alharbi, Ph.D.

Set Example:

Khalid Alharbi, Ph.D.

public static void main(String[] args) {
Set<String> mySet = new HashSet<>();
mySet.add("Audi");
mySet.add("Volvo");
mySet.add("Audi");
System.out.println(mySet);
// show the set in a dropdown menu
JOptionPane.showInputDialog(null,

"Select the car maker:","Select maker",
JOptionPane.QUESTION_MESSAGE,null,
mySet.toArray(), null);

}

Output:

[Volvo, Audi]

Demo

List (I)

• A List is an ordered sequence of elements.
• Unlike a Set, a List may contain duplicate elements.
• It is like an array but with a variable length and methods for

manipulating the position of elements in the list.
• Unlike arrays, a list is a collection, so we can not store primitives

directly and only store objects.
• The Java compiler will convert primitives into their corresponding objects

through auto-boxing.

Khalid Alharbi, Ph.D.

List (II)

• In Java, the List interface has a handful concrete implementations:
1. ArrayList class implements the List interface using a

resizable/growable array.
• It’s often faster for adding/removing at the end and better-performing

implementation in most scenarios.

2. LinkedList class implements the List interface using a doubly
LinkedList.
• It’s often faster for adding/removing at the beginning and middle and has

better-performing implementation in certain scenarios.

Khalid Alharbi, Ph.D.

List (III)

3. Vector class implements the List interface using a resizable or
growable array.
• Both the Vector class and the ArrayList class are almost equivalent. The

main difference is that access to a Vector is synchronized (thread-safe)
whereas it is not synchronized for an ArrayList.
• If a thread-safe implementation is not needed, it is recommended to use
ArrayList in place of Vector.
• You may also use the Collections.synchronizedList function with an
ArrayList to create a synchronized list and get the equivalent of a Vector.

Khalid Alharbi, Ph.D.

More on List Implementations: ArrayList

• ArrayList is built using an internal uninitialized array and a size
field to keep track of its capacity.
• If an element is added, it first verifies whether it has enough capacity in the

array to store new element or not. If there’s enough capacity, the array is
increased by 50% to create a larger array and copy the original array into it.

• The initial capacity can be defined upon creating the ArrayList:
List<Student> myList = new ArrayList<Student>(20);

Khalid Alharbi, Ph.D.

obj1 obj2 0 0 0 0Value

Index 0 1 2 3 4 5

Size = 2

More on List Implementations: LinkedList

• LinkedList is built using a doubly LinkedList where small node
objects keep links to the next and previous node objects.
• These node objects form a chain with pointers to the next and

previous node elements.

Khalid Alharbi, Ph.D.

Size = 4

element
next

prev

element
next

prev

element
next

prev

element
null

null

0 1 2 3

More on List Implementations: Vector

• Vector is quite similar to the ArrayList’s implementation, which
implements a growable array of objects with a size field to keep track of its
capacity, but with additional thread-safety and synchronized
implementation.
• If there’s enough capacity, the array is increased by 100% to create a larger array and

copy the original array into it.
• Vector is a legacy class since JDK 1.0 and is considered slower due to synchronization.

• The initial capacity can be optionally set upon creating the Vector:
List<String> myList = new Vector<String>(20);

Khalid Alharbi, Ph.D.

obj1 obj2 0 0 0 0Value

Index 0 1 2 3 4 5

Size = 2

List Methods
Method
public boolean add(E element) Adds the specified element to the end of the list
public void add(int index, E element) Adds the specified element at the given position.
public void remove(int index) Removes the element at the specified position
public E get(int index) Returns the element at the given position
public E set(int index , E element) Changes the element at the given position
public void clear() Removes all elements from the list.
public Iterator<E> iterator() Returns an object used to iterate through the elements of the list.

Khalid Alharbi, Ph.D.

// Note: E is the parameterized element type that is specified when creating the List. For example, below are
examples where E is of a String class type and an Integer class type:

List<String> myStringList = new ArrayList<String>();
List<Integer> myIntegerList = new ArrayList<Integer>();

List Example: ArrayList implementation

Khalid Alharbi, Ph.D.

List<String> myList = new ArrayList<String>();

myList.add("Ahmed");

myList.add("Ali");

myList.add("Abdullah");

System.out.println(String.format("Content: %s, Size: %d", myList, myList.size()));

myList.add(1,"Khalid");

System.out.println(String.format("Content: %s, Size: %d", myList, myList.size()));

Content: [Ahmed, Ali, Abdullah], Size: 3
Content: [Ahmed, Khalid, Ali, Abdullah], Size: 4

Demo

List Example: LinkedList implementation

Khalid Alharbi, Ph.D.

List<String> myList = new LinkedList<>();

myList.add("Ahmed");

myList.add("Ali");

myList.add("Abdullah");

System.out.println(String.format("Content: %s, Size: %d", myList, myList.size()));

myList.add(1,"Khalid");

myList.remove("Abdullah");

System.out.println(String.format("Content: %s, Size: %d", myList, myList.size()));

Content: [Ahmed, Ali, Abdullah], Size: 3
Content: [Ahmed, Khalid, Ali], Size: 3

Demo

List Example: Vector implementation

Khalid Alharbi, Ph.D.

List<String> myList = new Vector<>();

myList.add("Ahmed");

myList.add("Ali");

myList.add("Abdullah");

System.out.println(String.format("Content: %s, Size: %d", myList, myList.size()));

myList.add(1,"Khalid");

myList.remove("Abdullah");

System.out.println(String.format("Content: %s, Size: %d", myList, myList.size()));

Content: [Ahmed, Ali, Abdullah], Size: 3
Content: [Ahmed, Khalid, Ali], Size: 3

Demo

Stack (I)

• The Stack class extends the Vector class to represent a last-in-
first-out (LIFO) stack of objects with five operations: push(E item),
pop(), peek(), search(Object o) and empty().
• It retrieves elements in the reverse order they were added in.
• The Stack class does not provide a complete and consistent set of LIFO stack

operations.
• It’s a less powerful as a collection implementation but is optimized to perform

LIFO operations very quickly.
• Stacks are often implemented using an array
• The Deque interface and its implementations are preferred over the Stack

class (seen later).

Khalid Alharbi, Ph.D.

Stack Example (I)

• Recall that the Java compiler will convert primitives into their
corresponding objects through auto-boxing and back to primitives
through unboxing.

Khalid Alharbi, Ph.D.

Stack<Integer> myStack = new Stack<Integer>();
myStack.push(20); // autoboxing (int -> Integer)
myStack.push(40);
myStack.push(60);
int a = myStack.pop(); // unboxing (Integer -> int)
System.out.println(a);
System.out.println(myStack);

60

[20, 40]

Demo

More Stack Applications

• Examples of First-In-First-Out (FILO)
applications:
• The “Undo” operation in a text

editor.
• The “Back” button to return to

previous browsing history.

Khalid Alharbi, Ph.D.

"https://apple.com"

"https://www.apple.com/iphone/"

"https://www.apple.com/ipad/"

"https://www.apple.com/mac/"

"https://www.apple.com/watch/"

Push Pop
First-In-Last-Out Last-In-First-Out

Stack Example: Browsing History

Khalid Alharbi, Ph.D.

Stack<String> history = new Stack<String>();
history.push("https://apple.com");
history.push("https://www.apple.com/iphone/");
history.push("https://www.apple.com/ipad/");
history.push("https://www.apple.com/mac/");
history.push("https://www.apple.com/watch/");
while(!history.empty()){

System.out.println(history.pop());
}

https://www.apple.com/watch/

https://www.apple.com/mac/

https://www.apple.com/ipad/

https://www.apple.com/iphone/

https://apple.com

Demo

Queue

• A Queue typically, but not always, retrieves elements in a FIFO (first-
in-first-out) order.
• There are special queue implementations such as a priority queue where

elements are ordered according to their natural ordering or a Comparator
method.
• A queue may be bounded or unbounded.

• A bounded queue implementation uses a fixed-sized array to hold the elements, where
capacity can’t be changed.

• There are many concrete implementations of the Queue interface:

Khalid Alharbi, Ph.D.

• LinkedList
• PriorityQueue
• SynchronousQueue

• ArrayBlockingQueue
• ConcurrentLinkedQueue
• DelayQueue

Queue Example

Khalid Alharbi, Ph.D.

Queue<Integer> ordersQueue = new LinkedList();
ordersQueue.add(3);
ordersQueue.add(1);
ordersQueue.add(5);

while(!ordersQueue.isEmpty()){
System.out.println(ordersQueue.remove());

}

3
1
5

Demo

Deque

• A Deque is a queue that supports element insertion and removal at
both ends.
• The name deque is short for "double ended queue" and is

pronounced "deck".
• Most Deque implementations, but not always, are unbounded with

no fixed limits on the number of elements they may contain
• There are many concrete implementations of the Queue interface:

Khalid Alharbi, Ph.D.

• ArrayDeque
• LinkedList

• LinkedBlockingDeque
• ConcurrentLinkedDeque

Deque Example

Khalid Alharbi, Ph.D.

Deque<Integer> ordersDeque = new ArrayDeque();
ordersDeque.add(3);
ordersDeque.add(1);
ordersDeque.add(5);
ordersDeque.addFirst(0);
ordersDeque.addLast(7);

while(!ordersDeque.isEmpty()){
System.out.println(ordersDeque.remove());

}

0
3
1
5
7

Demo

Part 2: java.util.Map
interface
The Map interface is used for storing key/value pairs.

Khalid Alharbi, Ph.D.

The Map interface*

Khalid Alharbi, Ph.D.

* Not the complete list of classes and interfaces.

Map (I)

• A Map can be thought of as an array with an index that does not have
to be an int. It’s also known as “dictionary” or “associative array.”
• A Map stores key-value pairs acting like a cache or a minimalist

database.
• Maps cannot contain duplicate keys; each key is unique and maps to a

single value.

Khalid Alharbi, Ph.D.

4.1 3.4 4.6 4.3Value

Key Huda Ali Sarah Badr

Size
= 4

“Huda”
“Ali”

“Badr”
“Sarah”

4.3
3.4

4.1
4.6

Keys Values

Map (II)

• With generics, a Map type is parameterized with two types: one for
the keys and one for the values.
• A Map has the following basic operations:
• put(key, value): Creates a mapping from the key to the specified value.
• get(key): Returns the value by the given key.
• remove(key): Removes the mapping for the given key.

Khalid Alharbi, Ph.D.

Map<String, Date> m = new HashMap<String, Date>();

m.put("request-2345-ghy", new Date());

Map (III)

The Map interface has three concrete class implementations
(analogous to the Set Interface):
1. HashMap stores an unordered set of key-value pairs in a hash

table.
• HashMap does not maintain order but is considered faster and with O(1) for

the basic get() and put() operations.
2. TreeMap stores an ordered set of key-value pairs (according to the

natural ordering of its keys) in a TreeMap data structure.
3. LinkedHashMap stores an ordered set of key-value pairs

(according the insertion order) in a hash table with a doubly-linked
list running through it.

Khalid Alharbi, Ph.D.

Map Methods
Method
public <V> put(K key, V value) Adds a mapping from the given key to the given value.
public <V> get(Object key) Returns the value mapped to the given key or null if not found.
public boolean containsKey(K key) Returns true if there's a mapping for the specified key.
public <V> remove(Object key) Removes the mapping for a key if it exists
Set<K> keySet() Returns the unique set of keys in the map.
Collection<V> values() Returns the values contained in the map.
public void clear() Removes all key/value pairs from the map.

Khalid Alharbi, Ph.D.

// Note: K and V are the parameterized element type that are specified when creating the Map. For example, below
are examples where K is of a String class type and V is an Integer class type:

Map<String, Integer> myMap = new HashMap<String, Integer>();

Map Example

Khalid Alharbi, Ph.D.

Map<String, Integer> vehicles = new HashMap<String, Integer> ();
vehicles.put("BMW", 5);
vehicles.put("Audi", 4);
vehicles.put("Ford", 10);

for(String v: vehicles.keySet()){
System.out.println(String.format("We have %d %s vehicles", vehicles.get(v), v));

}

We have 4 Audi vehicles
We have 10 Ford vehicles
We have 5 BMW vehicles

Demo

One more thing on Maps: Maps vs. Sets

• A Set contains a unique elements of values and it is more like a map
from elements to boolean values (true). While a Map, is a map from
unique set of keys to values.
• Set: Is “Toyota” in the set? (true or false)

• Map: How many “Toyota” cars do we have? (mapping a key to a key)

Khalid Alharbi, Ph.D.

Toyota BMW Ford Honda Size
= 4

26 7 19 13Value

Key Toyota BMW Ford Honda

Size
= 4

Part 3: Generics
Work with a general data type

Khalid Alharbi, Ph.D.

Let’s answer the following questions:

• How do we store data without casting
• Any takers?

Khalid Alharbi, Ph.D.

Generics: Introduction (I)

• In OOP, polymorphism means that objects can take many forms and
are mostly interchangeable.
• Polymorphism occurs when a parent class reference is used to refer

to a child class object.
• Example: If Truck is a subtype of Vehicle, then we can use an object of type
Truck anywhere that we expect something of type Vehicle.

Khalid Alharbi, Ph.D.

public interface Vehicle{}
public class Truck extends Vehicle{}
Vehicle v = new Truck();

Generics: Introduction (II)

• Generics enable creating classes and methods that work with any
object data types.
• Generics are also known as “parameterized types” or “templates”.
• With Generics, we can write a function that handles parameters of

different data types without depending on their actual data types.
• Such a function is called generic function, or it takes a generic data type.

• Generics allow us to write general or flexible code without sacrificing
the static type safety.
• Generics are heavily used in Java Collections.
• Java Collections and Maps can hold just about any object type without the

need to do data type casting to convert one type into another.

Khalid Alharbi, Ph.D.

Problems without Generics?

• In Java, an object is a child of the general type java.lang.Object.
• If the ArrayList takes a java.lang.Object, it can accept any object,

which is error-prone, and the return value must be casted/converted, which
can also lead to run-time errors and unexpected behavior.

Khalid Alharbi, Ph.D.

ArrayList myList = new ArrayList();
myList.add("BMW");
myList.add(90); // This is bad, but compiler will allow it (with a warning)!
myList.add("Audi");

String bmw = (String) myList.get(0); // We must cast from Object to String
int quantity = (Integer) myList.get(1); // We must cast from Object to Integer
System.out.println(bmw); // prints BMW
System.out.println(quantity); //prints 90

Can we do better without Generics? (I)

• Is there a way to make an ArrayList that only accepts String into the
list? Can we get rid of the casting? Can we do better?
• What if we override the add() method in a subclass that only accept

String objects?
• Unfortunately, doing so will not override anything!! Instead, it will create

another overloaded method. We can add any non-String data type to our list.

Khalid Alharbi, Ph.D.

public void add(Object o) { ... } // still here
public void add(String s) { ... } // overloaded method

Can we do better without Generics? (II)

• What if we take a bigger approach and write our own StringList
class that does not extend ArrayList but delegates to it.
• Unfortunately, doing so will make our new StringList class not a List, so it

will not work with any Java Collection methods (e.g., sort(), addAll())

Khalid Alharbi, Ph.D.

class StringList{
ArrayList l;
public StringList(ArrayList l){

this.l = l;
}
public boolean add(String item){

return l.add(item);
}

}

Generics in Action

• The class java.util.List is a generic class and is declared as:

• The identifier E between the angle brackets (<>) is a type parameter.
• It indicates the class List is generic and requires a data type as an argument.
• The letter E is chosen as a naming convention, but it can be anything else.

• Example: Declaring a variable using the generic type List with a type
parameter of String:

Khalid Alharbi, Ph.D.

class List<E>{
public void add(E element){ //TODO: Add to the list }
public E get(int i) { //TODO: Get from the list }

}

List<String> myList;

How do generics solve these problems?

• If the ArrayList was made generics, then it would take only the
parameterized element type and threw a compile time error in any
other case (type-safety) and no need for casting (flexibility).

Khalid Alharbi, Ph.D.

ArrayList<String> myList = new ArrayList<String>();
myList.add("BMW");
// myList.add(90); This is wrong and will result in compiler time error
myList.add("Audi");

String bmw = myList.get(0); // Casting is not needed
System.out.println(bmw); // prints BMW

Generics: Conclusion

• Generics enable classes and interfaces to be used as parameter types
when defining classes, interfaces and methods.
• Type parameters allow us to re-use the same classes with different

data types.
• Generics allow stronger type-safety at compile time.
• Recall that fixing compile-time errors is much easier than fixing runtime errors.

• Generics eliminate the need for casting/type conversion.
• Generics enable us to work on collections of different types.

Khalid Alharbi, Ph.D.

Wrapping up

• Collections and generics are powerful abstractions in the Java programming
language.
• Collections allow for flexible and efficient containers that hold other objects.
• The java.util.Collection interface has three main child interfaces:

• Set: A collection of unique elements
• List: A collection of elements with a specific order.
• Queue: A collection of elements retrieved in specific fashion (e.g., first-in-first-out or

based a specific priority value).
• The java.util.Stack interface A collection of elements retrieved in

specific manner (first-in-last-out).
• The java.util.Map interface represents a collection of key/value pairs.

Khalid Alharbi, Ph.D.

