
CPIT-252
Software Design Patterns

Overview of Object-Oriented
Programming

Khalid Alharbi, Ph.D.

Overview of Object-Oriented
Programming
An overview of fundamental concepts in Object-Oriented Programming, which is a
prerequisite to understanding and applying design patterns.

Khalid Alharbi, Ph.D.

Object-Oriented Programming

• Object-oriented programming (OOP) is a programming paradigm
based on the concept of “objects”, which contain data (fields,
attributes or properties) and operations on these fields (methods).
• In class-based OOP, programs are composed of classes and objects

are instances of these classes.
• In OOP, we think in terms of objects that do things.
• This contrasts with functional programming, where we think in terms

of functions and their composition.

Khalid Alharbi, Ph.D.

How functional decomposition is different?

• Before we discuss the benefits of OOP, let’s see how problems are
solved in functional decomposition.
• Breaking down a program into smaller problems and then

decomposing smaller problems into functional steps.
• This seems to be the natural approach to problem solving.
• However, it creates a program centered around a “main program”
• This main program controls the details of the program’s data and operations.

• It also creates a program that does not respond well to changes.
• A minor change requires several changes through the entire main program.

Khalid Alharbi, Ph.D.

Why are there problems?

• Things always change, and software is always evolving.
• There’s nothing we can do to prevent changes to a software system.
• Many software bugs are the result of changes to the code.
• The functional decomposition approach has design problems due to

poor modularity, poor use of abstraction and poor encapsulation.
• The Object-Oriented approach aims to address these problems.
• The goal is to create designs that are reliable, resilient, easy to

understand, maintainable and accommodate changes without
breaking existing working code.

Khalid Alharbi, Ph.D.

OOP: Seven Main Principles
Abstraction, Encapsulation, Inheritance, Polymorphism, Composition, Aggregation
and Delegation.

Khalid Alharbi, Ph.D.

Let’s answer the following questions:

• What is the difference between Abstraction and Encapsulation?

• What is the difference between Inheritance and Composition?

• What is the difference between Composition and Aggregation?

• What is Polymorphism? What is Delegation?

• Any takers?

Khalid Alharbi, Ph.D.

Abstraction

• Abstraction refers to the set of concepts that address complexity by
hiding unnecessary details from the user (implementation hiding).
• Examples: The public methods of Java’s Math class and the public methods in

the String class.

public static double sqrt(double a)

public String substring(int beginIndex, int endIndex)

Khalid Alharbi, Ph.D.

Encapsulation (I)

• Encapsulation is about grouping all data fields and operations on
them in a single cohesive unit and hiding irrelevant implementation
details of a class from other classes (information hiding).
• In Java, encapsulation is achieved through marking an instance

variable as “private” and providing a method for retrieving and
updating a particular variable (getters and setters).
• It’s about the bundling of data with the methods that operate on that

data into a single component while restricting access to some of its
internal data.

Khalid Alharbi, Ph.D.

Encapsulation (II)
public class Product{

private double price;
private String name;

public Product(String name, double price){
this.name = name;
this.price = price;

}

public double getPrice(){
return this.price;

}

public void setPrice(double price){
this.price = price;

}
Khalid Alharbi, Ph.D.

But why do we need all of this?
- Why do we need good abstraction? What makes poor abstraction bad?
- Why do we want to utilize encapsulation? What makes poor encapsulation bad?

Khalid Alharbi, Ph.D.

Why Abstraction and Encapsulation?

• If you have poor abstraction, it means you have a class that is not
focused on a single task.
• You have attributes and methods that are unrelated to the purpose of the

class. This is also known as poor cohesion.
• This class becomes hard to maintain and hard to change and add features to.

• If you have poor encapsulation, it means you have leaky abstraction,
where external objects can change the private instances of the class
and use them in inappropriate ways.
• Imagine you have a Product class with a public weight attribute, and you have

several classes that touch this attribute directly changing it into a wrong value
below the minimum product weight.

Khalid Alharbi, Ph.D.

Why Abstraction and Encapsulation?

• Poor encapsulation implies poor abstraction and poor modularity.
• This makes adding things unclear and hard to do without breaking

existing code.
• This leads to weak cohesion.
• We strive for good abstraction and good encapsulation.
• We want a method to do one operation and do it right.
• We want a class to deal with one thing and control the accessibility of

everything in their objects.
• We want a package to contain a set of closely related classes.

Khalid Alharbi, Ph.D.

Relationships: Inheritance

• Inheritance relationships are “is-a” relationship.
• Student is a Person, Truck is a Vehicle, etc.

• Superclasses are more general than subclasses.
• Subclasses are more specific than superclasses.
• One class can extend another class.
• The subclass can add additional behavior or extend/override existing one.
• Inheritance allows us to build classes based on other classes and avoid

duplicating code.
• The extends keyword indicates inheritance and the super keyword refers to

superclass.

Khalid Alharbi, Ph.D.

Inheritance Example (I)
class Product {
private int id;
private float price;
private String name;

public Product(int id, float price, String name){
this.id = id;
this.price = price;
this.name = name;

}
public double getSalePrice(double percentage){

return this.price - ((percentage/100) * this.price);
}
public void addToShoppingCart(){

System.out.println(this.name + " has been added to the shopping cart. ");
}
}

Khalid Alharbi, Ph.D.

Inheritance Example (II)
class FoodProduct extends Product{
private LocalDate expirationDate;

public FoodProduct(int id, float price, String name, LocalDate expirationDate){
super(id, price, name);
this.expirationDate = expirationDate;

}
}

class ElectricProduct extends Product{
private String voltage;

public ElectricProduct(int id, float price, String name, String voltage){
super(id, price, name);
this.voltage = voltage;

}
}

Khalid Alharbi, Ph.D.

Polymorphism “Many Forms” (I)

• Polymorphism is about being able to refer to different subclasses of a
superclass in the same way.
• Objects of different types can access the same way.
• We can refer to classes that are related to each other by inheritance

in the same way.

Khalid Alharbi, Ph.D.

Polymorphism “Many Forms” (II)

Khalid Alharbi, Ph.D.

Product p1 = new FoodProduct(3452, 10.0, “Cheddar Cheese”, “2022-06-07”);
Product p2 = new ElectricProduct(4875, 30.0, “Extension cord”, “220v”);
System.out.Println(p1.getSalePrice(20.0));
System.out.Println(p1.addToShoppingCart());
System.out.Println(p2.getSalePrice(20.0));
System.out.Println(p2.addToShoppingCart());

Polymorphism “Many Forms” (III)

• Using the enhanced for statement (a.k.a. For-Each Loop)

Khalid Alharbi, Ph.D.

Product p1 = new FoodProduct(3452, 10.0, “Cheddar Cheese”, “2022-06-07”);
Product p2 = new ElectricProduct(4875, 30.0, “Extension cord”, “220v”);
Product [] products = {p1, p2};
for(Product p: products){

System.out.println(p.getSalePrice(20.0));
System.out.println(p.addToShoppingCart());

}

Demo

Inheritance: The Good!

• Code organization
• Code is broken and arranged in a related class and package.

• Code reuse
• Why not copy and paste the code whenever you need it?

• Extension
• Subclasses add new methods or customize and override inherited ones

• Readability
• The code is readable due to the clear model structure of inheritance.

• But despite all these benefits, Inheritance comes with serious costs.

Khalid Alharbi, Ph.D.

Inheritance: The bad!

• Inheritance can be powerful. But..
• Inheritance is static (i.e., defined at compile time).
• We can't change the implementation inherited from super classes at runtime.

• Inheritance breaks encapsulation because it exposes the internal
protected data of superclasses to subclasses.
• Subclasses can access details of their parent classes.

• Inheritance creates tight coupling between superclasses and
subclasses.
• Changes in the superclass implementation will force subclasses to change.

Khalid Alharbi, Ph.D.

Coupling

• Coupling is the degree of interdependence between classes,
packages, or methods.
• Tight coupling in classes means classes are strongly connected to the

point that they can’t be changed without breaking other parts in the
system.
• With tight coupling, a small change in one method or attribute will

result in ripple effects.
• Tight coupling will result in spending a long time debugging and

understanding the relationships between parts of the system.

Khalid Alharbi, Ph.D.

Association, composition,
aggregation and delegation
- What are the different types of associations?
- Why do we need aggregation and composition?
- Why do we want to favor composition over inheritance?
- What is delegation and how can it be implemented?

Khalid Alharbi, Ph.D.

Relationships: Association

• Association is an “has-a” relationship
• A class has a reference to another object for another class.

• In UML, multiplicity can indicate the number of instances
involved in the relationship.
• Associations can also convey whole-part relationships

(e.g., Composition and Aggregation).

Khalid Alharbi, Ph.D.

Car

Owner

*

0..1public class Car{
private Owner o;

}

Relationships: Composition (I)

• Composition is a “has-a” or “whole-part ” special
association relationship.
• Composition is a strong association with ownership.
• An object is exclusively owned by another object.
• If the composing object is deleted, all composed and

associated objects are deleted too.

• In UML, composition is indicated with a solid/black
diamond attached to the composing class.

Khalid Alharbi, Ph.D.

Book

Page

Relationships: Composition (II)

• Composition in Java:

Khalid Alharbi, Ph.D.

Book

Pagepublic class Book{
private Page p;
public Book(){
this.p = new Page();

}
}

public class Client{
public static void main(String[]args){
Book b = new Book();
b = null; // Both b and p are deleted.

}
}

Demo

Relationships: Aggregation (I)

• Aggregation is a “has-a” or “whole-part ” special
association relationship.
• Aggregation is a weak association with no ownership.
• An object is not owned by the composing object.
• If the composing object is deleted, all composed and

associated objects are not affected.

• In UML, composition is indicated with a white diamond
attached to the composing class.

Khalid Alharbi, Ph.D.

Car

Engine

Relationships: Aggregation (II)

• Aggregation in Java:

Khalid Alharbi, Ph.D.

Car

Enginepublic class Car{
private Engine e;
public Car(Engine e){
this.e = e;

}
}

public class Client{
public static void main(String[]args){
Engine e = new Engine();
Car c = new Car(e);
c = null; // Only c is deleted; e is not deleted.

}
}

Demo

Relationships: Delegation (I)

When a method is called and needs to handle a message, there’re
typically four ways to handle the request:
1. Handle the request by implementing the logic in the same method

(implementation).
2. Leave it to the superclass to handle it via inheritance.
3. Pass the request to another object (delegation)
4. A combination of the three options.

Khalid Alharbi, Ph.D.

Relationships: Delegation (II)

• Delegation is also often considered as a “has-a” relationship.
• A class has a reference to another object for another class (a.k.a.

helper class) and sends a message to it when needed (invoke a
method in the helper class).

Khalid Alharbi, Ph.D.

Relationships: Delegation (III)
• Delegation in Java:

Khalid Alharbi, Ph.D.

public class ShoppingList{
private String item;
private List<String> items;
private Notification notification;

public ShoppingList(){
items = new LinkedList<String>();
this.notification = new Notification();

}
public void add(String item){
this.items.add(item);

}
public void sendNotification(){

this.notification.post(this.items);
}

}

Here:
ShoppingList
Delegates all the
work to both the
Java’s Linkedlist
class and a
Notification class.

Demo

“Favor Composition over Inheritance”, this is a
fundamental object-oriented design principle.

Khalid Alharbi, Ph.D.

Use Composition instead of subclassing (I)

Use Composition instead of subclassing (II)

In Effective Java by Joshua Bloch, Item 16: Favor composition over
inheritance:

Khalid Alharbi, Ph.D.

“[Subclassing] is a powerful way to achieve code reuse, but it is not
always the best tool for the job. Used inappropriately, it leads to
fragile software.”

“ Instead of extending an existing class, give your new class a private
field that references an instance of the existing class. … The resulting
class will be rock solid, with no dependencies on the implementation
details of the existing class ”

Object-Oriented
Programming in Java

An overview of fundamental Object-Oriented concepts in the Java
programming language.

Khalid Alharbi, Ph.D.

Functions vs. Methods

• Both functions and methods refer to a series of statements inside a
block of code. They may take inputs (called parameters) and return
some value to a caller.
• The difference is where they’re declared:
• A method is defined inside of a class.
• A function is defined outside of a class.

• In Java, C#, there’re only methods.
• In C, Erlang there’re only functions.
• In C++, Python, there’re both functions and methods.

Khalid Alharbi, Ph.D.

Parameters vs Arguments

• Parameters: Variables that are part of the method’s signature or
declaration.

• Arguments: values or variables passed when invoking a method or a
function.

int x = 5;
add(x, 10); // x and 10 are arguments.

int add(int x, int y){ // x and y are parameters.
return x + y;

}

Khalid Alharbi, Ph.D.

Class Variables vs Instant Variables
Instant Variables Class Variables

Allocated when an object is created using the keyword
“new” and destroyed when the object is destroyed.

Allocated when the program starts and destroyed
when the program exits.

Declared as normal inside a class but outside a
method or a block.

Declared using the keyword “static” inside a class but
outside a method or block.

Accessed directly by calling the variable name. Accessed by calling ClassName.VariableName

Hold values that are unique to each object. Hold values that are shared by all objects or instances
of the class.

public class Student {
private String name; // instant variable
private int id; // instant variable
private static count; // class variable
public Student(String name){
this.name = name;
this.id = ++count;

}
} Khalid Alharbi, Ph.D.

Example: Using only instance variables
class Product {
private int id;
private float price;
private String name;
private int totalProducts;

public Product(String name, float price){
this.name = name;
this.price = price;
this.id = ++totalProducts;

}
public String toString(){
return "Name:" + this.name +"\nPrice"+ this.price + "\nId: " + this.id;

}
public int getTotalProducts(){
return this.totalProducts;

}
}

Khalid Alharbi, Ph.D.

Example: Using only instance variables (cont.)
class App{
public static void main(String[]args){
Product p1 = new Product("Chair", 150.00f);
Product p2 = new Product("Desk", 100.00f);
System.out.println(p1);
System.out.println(p2);
System.out.println("Total products: " + p2.getTotalProducts());

}
}

Name:Chair
Price150.0
Id: 1
Name:Desk
Price100.0
Id: 1
Total products: 1

Khalid Alharbi, Ph.D.

Demo

What went wrong?

Khalid Alharbi, Ph.D.

Example: Using class and instance variables
class Product {
private int id;
private float price;
private String name;
private static int totalProducts; // class variable

public Product(String name, float price){
this.name = name;
this.price = price;
this.id = ++totalProducts;

}
public String toString(){
return "Name:" + this.name +"\nPrice"+ this.price + "\nId: " + this.id;

}
public int getTotalProducts(){
// class variables must be qualified by type name (class name).
return Product.totalProducts;

}
} Khalid Alharbi, Ph.D.

Example: Using only instance variables (cont.)
class App{
public static void main(String[]args){
Product p1 = new Product("Chair", 150.00f);
Product p2 = new Product("Desk", 100.00f);
System.out.println(p1);
System.out.println(p2);
System.out.println("Total products: " + p2.getTotalProducts());

}
}

Name:Chair
Price150.0
Id: 1
Name:Desk
Price100.0
Id: 2
Total products: 2

Khalid Alharbi, Ph.D.

Demo

What is not so right?

Khalid Alharbi, Ph.D.

Example: Using class and instance variables
[Hot Fix]
class Product {
private int id;
private float price;
private String name;
private static int totalProducts; // class variable
public Product(String name, float price){
this.name = name;
this.price = price;
this.id = ++totalProducts;

}
public String toString(){
return "Name:" + this.name +"\nPrice"+ this.price + "\nId: " + this.id;

}
// getTotalProducts should be a class method
public static int getTotalProducts(){

// class variables must be qualified by type name (class name).
return Product.totalProducts;

}
}

Khalid Alharbi, Ph.D.

Example: Using only instance variables
[Hot Fix](cont.)
class App{
public static void main(String[]args){
Product p1 = new Product("Chair", 150.00f);
Product p2 = new Product("Desk", 100.00f);
System.out.println(p1);
System.out.println(p2);
System.out.println("Total products: " + Product.getTotalProducts());

}
}

Name:Chair
Price150.0
Id: 1
Name:Desk
Price100.0
Id: 2
Total products: 2

Khalid Alharbi, Ph.D.

Demo

Abstract class vs Interface

Abstract Class Interface

A class with one or more abstract method (methods
that are declared with no implementation).

A placeholder for a collection of methods with no
implementation.

Can include non-abstract methods with complete
implementation.

Can’t have concrete implementation of the method.

An abstract class can have properties, abstract
methods, and non-abstract methods.

An interface only include the method’s signature or
declaration with no implementation.

A class can extend an abstract class and implements
its abstract method.

A class can implement multiple interfaces but only
inherits or extends one super class.

Example: Food is an abstract concept for things we
can eat. We can’t create an instance of Food itself but
we can create an instance of Pizza, Soup, or Rice,
which are types of Food.

Example: Skills (Athlete, Poet, Writer, Chef, etc.). We
can’t create an instance of a Skill but we can create an
instance of Person, who may acquire multiple skills
but remains a Person.

Khalid Alharbi, Ph.D.

Abstract class example (Declaration)

abstract class Food{
/* TODO: variable declarations: name, quantity, weight,
* weightUnit, servingSize, servingUnit, calories, etc. */
// TODO: Constructor

// All food has calories that can be calculated differently.
public abstract float getTotalCalories();
// All food can be eaten in different ways.
public abstract String eat();
// All food has the same calories printed info
public String getCaloriesInfo(){

return "Name: " + this.name + "\n" + "Quantity: " + this.quantity +
"\n" + "Weight: " + this.weight + " " + this.weightUnit + "\n" +
"Serving Size: " + this.servingSize + " " + this.servingUnit + "\n" +
"Calories:" + this.calories + "\n";

}

Khalid Alharbi, Ph.D.

Abstract class example (Usage)
class Orange extends Food{

private static final float CALORIES_PER_GRAM = .37f;
private String type;

public Orange(float weight, String weightUnit, String type) {
super(weight, weightUnit);
super.calories = CALORIES_PER_GRAM;
this.type = type;

}
// All food has calories that can be calculated differently.
public float getTotalCalories(){
return super.calories * super.weight;

}
// All food can be eaten in different ways.
public String eat(){

return ”Peel an orange by hand or use a knife to cut it into wedges.”
};

}
Khalid Alharbi, Ph.D.

Interface example (Declaration)

interface Athlete{
// An athlete may compete in different sports.
void compete(String competition);
// An athlete may train or practice in different ways.
void practice();
// An athlete may develop different performance levels.
void developPerformanceLevels(int level);

}

interface Artist{
// An artist may paint.
void paint();
// An artist may sell their arts.
float sell();

}

Khalid Alharbi, Ph.D.

Interface example (Usage)
class Talented implements Athlete, Artist{

private int age;
private String name;

public Talented(int age, String name) {
this.age = age;
this.name = name;

}
// can compete, practice, developPerformanceLevels, paint, and sell
@Override
public void compete(String competition){
System.out.println(“I’m competing in “ + competition);

}
@Override
public float sell(){

return 499.99f;
};
// TODO: Override the remining abstract methods

}
Khalid Alharbi, Ph.D.

The final keyword

• The final keyword can be added to a variable, method or class.
• A final variable is a constant whose value is initialized once and

cannot be changed.

• A final method cannot be overridden by subclasses.

• A final class classes cannot be subclassed and inherited from.

Khalid Alharbi, Ph.D.

static final double PI = 3.14159265358979

final class Math{}

final void generateReport(){}

Wrap up and what’s next

• Fundamental concepts in Object-Oriented Programming.
• Abstraction, encapsulation, inheritance, polymorphism, composition,

aggregation and delegation.

• The benefits and disadvantages of inheritance.
• Tight coupling and poor cohesion.
• Favor composition over inheritance.
• Abstract classes and interfaces.
• Class variables and instance variables.
• Next: Introduction to design patterns and creational design patterns

Khalid Alharbi, Ph.D.

